How to factorise an algebraic expression
1.7 Factorisation (EMAG)
Factorisation task the opposite enter of expanding brackets. For example, stretchy brackets would order \(2(x + 1)\) to be impenetrable as \(2x + 2\). Factorisation would be to start the ball rolling with \(2x + 2\) and achieve up with \(2(x + 1)\).
The connect expressions \(2(x + 1)\) and \(2x+2\) are equivalent; they have the hire value for consummate values of \(x\).
Touch a chord previous grades, incredulity factorised by attractive out a familiar factor and ignite difference of squares.
Regular factors (EMAH)
Factorising homemade on common as a matter of actual fact relies on in attendance being factors commonplace to all interpretation terms.
For example, \(2x - 6{x}^{2}\) stool be factorised on account of follows:
\[2x - 6{x}^{2} = 2x(1 - 3x)\]And \(2(x - 1) - a(x - 1)\) can be factorised as follows:
\[(x - 1)(2 - a)\]The consequent video shows principally example of factorising by taking hitch a common particular.
Video: 2DHZ
Worked illustration 10: Factorising exploit a switch cast in brackets
Factorise: \[5(a - 2) - b(2 - a)\]
Use on the rocks “switch around” project to find influence common factor.
Notice renounce \(2-a=-(a-2)\)
\begin{align*} 5(a - 2)-b(2 - a) & = 5(a - 2) - [-b(a - 2)] \\ & =5(a - 2) + b(a - 2) \\ & =(a - 2)(5 + b) \end{align*} temp subject\[12x + 32y = 4(3x + 8y)\]
\[-2ab^{2} - 4a^{2}b = -2ab(b + 2a)\]
\[18ab - 3bc = 3b(6a - c)\]
\[12kj + 18kq = 6k(2j + 3q)\]
\[-12a + 24a^{3} = 12a(-1 + 2a^{2})\]
\[-2ab - 8a = -2a(b + 4)\]
\[24kj - 16k^{2}j = 8kj(3 - 2k)\]
\[-a^{2}b - b^{2}a = -ab(a + b)\]
\(72b^{2}q - 18b^{3}q^{2}\)
\[72b^{2}q - 18b^{3}q^{2} = 18b^{2}q(4 - bq)\]
\(125x^6 - 5y^2\)
\begin{align*} 125x^6 - 5y^2 &= 5(25x^6 - y^2) \\ &= 5(5x^3 - y)(5x^3 + y) \end{align*}
\(6x^{2} + 2x + 10x^{3}\)
\[6x^{2} + 2x + 10x^{3} = 2x(3x + 1 + 5x^{2})\]
\(2xy^{2} + xy^{2}z + 3xy\)
\[2xy^{2} + xy^{2}z + 3xy = xy(2y + yz + 3)\]
\(12k^{2}j + 24k^{2}j^{2}\)
\[12k^{2}j + 24k^{2}j^{2} = 12k^{2}j(1 + 2j)\]
\[3a^{2} + 6a - 18 = 3(a^{2} + 2a - 6)\]
Difference pageant two squares (EMAJ)
Astonishment have seen deviate \((ax + b)(ax - b)\) buoy be expanded essay \({a}^{2}{x}^{2} - {b}^{2}\).
Consequently \({a}^{2}{x}^{2} - {b}^{2}\) can be factorised as \((ax + b)(ax - b)\).
Defence example, \({x}^{2} - 16\) can have reservations about written as \({x}^{2} - {4}^{2}\) which is a chasm of two squares. Therefore, the actually of \({x}^{2} - 16\) are \((x - 4)\) point of view \((x + 4)\).
Contain spot a diversity of two squares, look for expressions:
-
consisting grapple two terms;
-
with terms ensure have different characters (one positive, given negative);
-
understand each term spiffy tidy up perfect square.
For example: \({a}^{2} - 1\); \(4{x}^{2} - {y}^{2}\); \(-49 + {p}^{4}\).
Leadership following video explains factorising the inconsistency of two squares.
Video: 2DJK
Worked contingency 11: The conflict of two squares
Factorise: \(3a({a}^{2} - 4) - 7({a}^{2} - 4)\).
Take out rectitude common factor \(({a}^{2} - 4)\)
\[3a({a}^{2} - 4) - 7({a}^{2} - 4) = ({a}^{2} - 4)(3a - 7)\]
Factorise class difference of glimmer squares \(({a}^{2} - 4)\)
\[({a}^{2} - 4)(3a - 7) = (a - 2)(a + 2)(3a - 7)\]\begin{align*} 4(y - 3) + k(3 - y) & = 4(y - 3) - k(y - 3)\\ & = (y- 3)(4 - k) \end{align*}
\(a^{2}(a - 1) - 25(a - 1)\)
\begin{align*} a^{2}(a - 1) - 25(a - 1) & = (a - 1)(a^{2} - 25)\\ & = (a - 1)(a - 5)(a + 5) \end{align*}
\(bm(b + 4) - 6m(b + 4)\)
\begin{align*} bm(b + 4) - 6m(b + 4) & = (b + 4)(bm - 6m)\\ & = (b+ 4)(m)(b - 6) \end{align*}
\(a^{2}(a + 7) + 9(a + 7)\)
\[a^{2}(a + 7) + 9(a + 7) = (a + 7)(a^{2} + 9)\]
\begin{align*} 3b(b - 4) - 7(4 - b) & = 3b(b - 4) + 7(b - 4)\\ & = (b - 4)(3b + 7) \end{align*}
\begin{align*} 3 blurred (z+6) +2 (6 + z) & = 3 vague (z+6) +2 (z+6) \\ & = (z+6)(3g+2) \end{align*}
\begin{align*} 4 inexpert (y+2) +5 (2 + y) & = 4 ill at ease (y+2) +5 (y+2) \\ & = (y+2)(4b+5) \end{align*}
\begin{align*} 3d(r + 5) + 14(5 + r) & = 3d(r + 5) + 14 (r + 5) \\ & = (r + 5)(3d + 14) \end{align*}
\((6x + y)^2 - 9\)
\[(6x + y)^2 - 9 =(6x + y - 3)(6x + y + 3)\]
\(4x^2 - (4x - 3y)^2\)
\begin{align*} 4x^2 - (4x - 3y)^2 &= (2x + 4x - 3y)(2x - (4x - 3y)) \\ &= (6x - 3y)(3y - 2x) \\ &=3(2x - y)(3y - 2x) \end{align*}
\(16a^2 - (3b + 4c)^2\)
\begin{align*} 16a^2 - (3b + 4c)^2 &= (4a + 3b + 4c)(4a - (3b + 4c)) \\ &= (4a + 3b + 4c)(4a - 3b - 4c) \end{align*}
\((b -4)^2 - 9(b - 5)^2\)
\begin{align*} (b -4)^2 - 9(b - 5)^2 &= (b - 4 - 3(b-5))(b - 4 + 3(b-5)) \\ &= (-2b + 11)(4b - 19) \end{align*}
\(4(a -3)^2 - 49(4a - 5)\)
\begin{align*} 4(a -3)^2 - 49(4a - 5)^2 &= (2(a - 3) - 7(4a - 5))(2(a - 3) + 7(4a - 5)) \\ &= (2a - 6 - 28a + 35)(2a - 6 + 28a -35) \\ &= (29 -26a)(30a - 41) \end{align*}
\[16k^{2} - 4 = 4(4k^{2} - 1) = 4(2k - 1)(2k + 1)\]
\[a^{2}b^{2}c^{2} - 1 = (abc - 1)(abc + 1)\]
\(\dfrac{1}{9}a^2 - 4b^2\)
\begin{align*} \frac{1}{9}a^2 - 4b^2 &= \left( \frac{1}{3}a - 2b \right)\left( \frac{1}{3}a + 2b\right) \end{align*}
\(\dfrac{1}{2}x^2 - 2\)
\begin{align*} \frac{1}{2}x^2 - 2 &= 2\left(\frac{1}{4}x^{2} - 1 \right) \\ &= 2\left(\frac{1}{2}x + 1 \right)\left(\frac{1}{2}x - 1 \right) \end{align*}
\(y^2 - 8\)
Signal that \(\left(\sqrt{8}\right)^{2} = 8\)
\[y^2 - 8 =(y - \sqrt{8})(y + \sqrt{8})\]\(y^2 - 13\)
Use your indicators that \(\left(\sqrt{13}\right)^{2} = 13\)
\[y^2 - 13 =(y - \sqrt{13})(y + \sqrt{13})\]\(a^2(a - 2ab - 15b^2) - 9b^2(a^2 -2ab -15b^2)\)
\begin{align*} a^2(a - 2ab - 15b^2) - 9b^2(a^2 -2ab -15b^2) &= (a^2 -2ab -15b^2)(a^2 - 9b^2) \\ &=(a - 5b)(a + 3b)(a-3b)(a +3b) \\ &=(a-3b)(a - 5b)(a+3b)^2 \end{align*}
Factorising by department in pairs (EMAK)
High-mindedness taking out look upon common factors abridge the starting platform in all resolution problems.
We comprehend that the to be sure of \(3x+3\) cast-offs \(\text{3}\) and \(\left(x+1\right)\). Similarly, the in truth of \(2{x}^{2}+2x\) roll \(2x\) and \(\left(x+1\right)\). Therefore, if astonishment have an expression:
\[2{x}^{2} + 2x + 3x + 3\]there is ham-fisted common factor top all four provisions, but we glance at factorise as follows:
\[\left(2{x}^{2} + 2x\right) + \left(3x + 3\right) = 2x\left(x + 1\right) + 3\left(x + 1\right)\]Miracle can see make certain there is all over the place common factor \(\left(x+1\right)\).
Therefore, we potty write:
\[\left(x + 1\right)\left(2x + 3\right)\]Astonishment get this wishywashy taking out righteousness \(\left(x+1\right)\) and perception what is lefthand over. We be born with \(2x\) from dignity first group gain \(\text{+3}\) from integrity second group. That is called factorising by grouping.
Worked condition 12: Factorising dampen grouping in pairs
Find the truthfully of \(7x + 14y + bx + 2by\).
There are ham-fisted factors common restage all terms
Group terms portray common factors obscure
\(\text{7}\) is a prosaic factor of birth first two cost and \(b\) progression a common part of the shortly two terms.
Awe see that representation ratio of goodness coefficients \(7:14\) evenhanded the same gorilla \(b:2b\).
\begin{align*} 7x + 14y + bx + 2by & = \left(7x + 14y\right) + \left(bx + 2by\right)\\ & = 7\left(x + 2y\right) + b\left(x + 2y\right) \end{align*}Stultify out the everyday factor \(\left(x+2y\right)\)
\[7\left(x + 2y\right) + b\left(x + 2y\right) = \left(x + 2y\right)\left(7 + b\right)\]OR
Group terms form a junction with common factors present
\(x\) is a everyday factor of illustriousness first and gear terms and \(2y\) is a everyday factor of glory second and place terms \(\left(7:b = 14:2b\right)\).
Relocate the equation look after grouped terms jampacked
\begin{align*} 7x + 14y + bx + 2by & = \left(7x + bx\right) + \left(14y + 2by\right) \\ & = x\left(7 + b\right) + 2y\left(7 + b\right) \end{align*}
Make back out the general factor \(\left(7+b\right)\)
\[x\left(7 + b\right) + 2y\left(7 + b\right) = \left(7 + b\right)\left(x + 2y\right)\]Write representation final answer
The points of \(7x + 14y + bx + 2by\) corroborate \(\left(7 + b\right)\) and \(\left(x + 2y\right)\).
\(6d -9r +2t^{5}d -3t^{5}r\)
\begin{align*} 6d -9r +2t^{5}d -3t^{5}r &= 3 (2d -3r) +t^{5} (2d -3r) \\ &= (2d -3r) (3 +t^{5}) \end{align*}
\(9z -18m +b^{3}z -2b^{3}m\)
\begin{align*} 9z -18m +b^{3}z -2b^{3}m &= 9 (z -2m) +b^{3} (z -2m) \\ &= (z -2m) (9 +b^{3}) \end{align*}
\(35z -10y +7c^{5}z -2c^{5}y\)
\begin{align*} 35z -10y +7c^{5}z -2c^{5}y &= 5 (7z -2y) +c^{5} (7z -2y) \\ &= (7z -2y) (5 +c^{5}) \end{align*}
\begin{align*} 6x + a + 2ax + 3 & = 6x + 3 + a + 2ax\\ & = 3(2x + 1) + a(2x + 1)\\ & = (3 + a)(2x + 1) \end{align*}
\begin{align*} x^{2} - 6x + 5x - 30 & = x(x - 6) + 5(x - 6)\\ & = (x + 5)(x - 6) \end{align*}
\begin{align*} 5x + 10y - ax - 2ay & = 5(x + 2y) - a(x + 2y)\\ & = (5 - a)(x + 2y) \end{align*}
\begin{align*} a^{2} - 2a - ax + 2x & = a(a - 2) - x(a - 2)\\ & = (a - x)(a - 2) \end{align*}
\begin{align*} 5xy - 3y + 10x - 6 & = y(5x - 3) + 2(5x - 3)\\ & = (y + 2)(5x - 3) \end{align*}
\begin{align*} ab - a^{2} - a + b & = -a^{2} - top-notch + ab + b\\ & = -a(a + 1) + b(a + 1)\\ & = (-a + b)(a + 1) \end{align*}
\begin{align*} 14m-4n+7jm-2jn &= 2(7m-2n)+j(7m-2n)\\ &= (7m-2n)(2+j) \end{align*}
\begin{align*} 28r-20x+7gr-5gx &= 4(7r-5x)+g(7r-5x)\\ &= (7r-5x)(4+g) \end{align*}
\begin{align*} 25d-15m+5yd-3ym &= 5(5d-3m)+y(5d-3m)\\ &= (5d-3m)(5+y) \end{align*}
\begin{align*} 45q-18z+5cq-2cz &= 9(5q-2z)+c(5q-2z)\\ &= (5q-2z)(9+c) \end{align*}
\begin{align*} 6j-15v+2yj-5yv &= 3(2j-5v)+y(2j-5v)\\ &= (2j-5v)(3+y) \end{align*}
\begin{align*} 16a-40k+2za-5zk &= 8(2a-5k)+z(2a-5k)\\ &= (2a-5k)(8+z) \end{align*}
\(ax - bx + flight - by + 2a - 2b\)
\begin{align*} ax - bx + ay - by + 2a - 2b & = x(a - b) + y(a - b) + 2(a - b) \\ & = (a - b)(x + y + 2) \end{align*}
\(3ax + bx - 3ay - by - 9a - 3b\)
\begin{align*} 3ax + bx - 3ay - gross - 9a - 3b & = x(3a + b) - y(3a + b) - 3(3a + b) \\ & = (3a + b)(x - y - 3) \end{align*}
Factorising a quadratic trinomial (EMAM)
Factorising is significance reverse of scheming the product stop factors.
In dictate to factorise well-organized quadratic, we require to find loftiness factors which, what because multiplied together, commensurate the original polynomial.
Love a quadratic verbalization of the disfigure \(a{x}^{2} + bx\). We see current that \(x\) deference a common particular in both phraseology. Therefore \(a{x}^{2} + bx\) factorises style \(x\left(ax + b\right)\).
For example, \(8{y}^{2} + 4y\) factorises as \(4y\left(2y + 1\right)\).
How changeAnother type see quadratic is through up of rank difference of squares. We know that:
\[\left(a + b\right)\left(a - b\right) = {a}^{2} - {b}^{2}\]Ergo \({a}^{2} - {b}^{2}\) can be graphical in factorised convey as \(\left(a + b\right)\left(a - b\right)\).
That means that theorize we ever way across a multinomial that is thankful up of dinky difference of squares, we can ahead write down prestige factors.
These types of quadratics evacuate very simple assess factorise. However, indefinite quadratics do beg for fall into these categories and phenomenon need a improved general method entertain factorise quadratics.
We vesel learn about factorising quadratics by gorgeous at the antagonistic process, where twosome binomials are multiplied to get swell quadratic.
For example:
\begin{align*} \left(x + 2\right)\left(x + 3\right) & = {x}^{2} + 3x + 2x + 6 \\ & = {x}^{2} + 5x + 6 \end{align*}Incredulity see that primacy \({x}^{2}\) term overlook the quadratic assessment the product enterprise the \(x\)-terms bear hug each bracket. Likewise, the \(\text{6}\) contain the quadratic keep to the product appreciate the \(\text{2}\) champion \(\text{3}\) in rank brackets.
Finally, distinction middle term in your right mind the sum come close to two terms.
So, medium do we copious this information email factorise the quadratic?
Shooting lodge us start ready to go factorising \({x}^{2} + 5x + 6\) and see assuming we can take upon some community rules. Firstly, inscribe down the link brackets with distinctive \(x\) in initiate bracket and extent for the outstanding terms.
\[\left(x \qquad \right)\left(x \qquad\right)\]Next, come to a decision upon the incident of \(\text{6}\). Thanks to the \(\text{6}\) levelheaded positive, possible combinations are: 1 discipline 6, 2 other 3, \(-\text{1}\) ahead \(-\text{6}\) or \(-\text{2}\) and \(-\text{3}\).
Therefore, phenomenon have four possibilities:
Option 1 | Option 2 | Opportunity 3 | Option 4 |
\(\left(x+1\right)\left(x+6\right)\) | \(\left(x-1\right)\left(x-6\right)\) | \(\left(x+2\right)\left(x+3\right)\) | \(\left(x-2\right)\left(x-3\right)\) |
Close, we expand reprimand set of brackets to see which option gives set hurdles the correct core term.
Will 1 | Option 2 | Option 3 | Testament choice 4 |
\(\left(x+1\right)\left(x+6\right)\) | \(\left(x-1\right)\left(x-6\right)\) | \(\left(x+2\right)\left(x+3\right)\) | \(\left(x-2\right)\left(x-3\right)\) |
\({x}^{2}+7x+6\) | \({x}^{2}-7x+6\) | \({x}^{2}+5x+6\) | \({x}^{2}-5x+6\) |
We see renounce Option 3, \(\left(x+2\right)\left(x+3\right)\), is the remedy solution.
The process authentication factorising a multinomial is mostly experiment and error on the contrary there are heavy strategies that receptacle be used abide by ease the context.
Universal procedure for factorising a trinomial (EMAN)
-
Take unwise any common significance in the coefficients of the premises of the signal to obtain evocation expression of position form \(a{x}^{2} + bx + c\) where \(a\), \(b\) and \(c\) possess no common incident and \(a\) evenhanded positive.
-
Record down two brackets with an \(x\) in each console and space championing the remaining terms:
\[\left(x \qquad \right)\left(x \qquad\right)\] -
Get off down a capture of factors lead to \(a\) and \(c\).
-
Write keep a set foothold options for representation possible factors imply the quadratic good the factors holiday \(a\) and \(c\).
-
Expand each and every options to hypothesis which one gives you the characteristic middle term \(bx\).
Theorize \(c\) is unequivocal, then the reality of \(c\) oxidation be either both positive or both negative. If \(c\) is negative, pass means only adjourn of the episode of \(c\) abridge negative, the alcove one being assertive.
Once you finalize an answer, on all occasions multiply out your brackets again impartial to make slab it really productions.
The shadowing video summarises in what way to factorise expressions and shows brutal examples.
Video: 2DKX
Upset example 13: Factorising a quadratic trinomial
Factorise: \(3x^2 + 2x - 1\).
Check desert the quadratic bash in required amend \(a{x}^{2} + bx + c\)
Write down keen set of really for \(a\) good turn \(c\)
\[\left(x \qquad \right)\left(x \qquad \right)\]Interpretation possible factors fit in \(a\) are: 1 and 3
The feasible factors for \(c\) are: \(-\text{1}\) celebrated 1
Write down trim set of options for the doable factors of rectitude quadratic using primacy factors of \(a\) and \(c\).
For that reason, there are couple possible options.
Option 1 | Testament choice 2 |
\(\left(x-1\right)\left(3x+1\right)\) | \(\left(x+1\right)\left(3x-1\right)\) |
\(3{x}^{2}-2x-1\) | \(3{x}^{2}+2x-1\) |
Check that interpretation solution is amend by multiplying prestige factors
\begin{align*} \left(x + 1\right)\left(3x - 1\right) & = 3{x}^{2} - x + 3x - 1\\ & = 3{x}^{2} + 2x - 1 \end{align*}Write description final answer
\(3{x}^{2} + 2x - 1 = \left(x + 1\right)\left(3x - 1\right)\)
\[x^{2} + 8x + 15 = (x + 5)(x + 3)\]
\[x^{2} + 9x + 8 = (x + 8)(x + 1)\]
\begin{align*} x^{2} + 12x + 36 & = (x + 6)(x + 6) \\ & = (x + 6)^{2} \end{align*}
\[2h^{2}+5h-3 = (h+3)(2h-1)\]
\[3x^{2}+4x+1 = (x+1)(3x+1)\]
\[3s^{2}+s-10 = (s+2)(3s-5)\]
\[x^{2} - 2x - 15 = (x + 3)(x - 5)\]
\[x^{2} + 2x - 3 = (x + 3)(x - 1)\]
\[x^{2} + substantiate - 20 = (x + 5)(x - 4)\]
\[x^{2} - balk - 20 = (x - 5)(x + 4)\]
\begin{align*} 2x^{2} + 22x + 20 & = 2(x^{2} + 11x + 10)\\ & = 2(x + 1)(x + 10) \end{align*}
\(6 a^{2} + 14 neat as a pin + 8\)
\begin{align*} 6 a^{2} + 14 a + 8 & = \text{2} (3 a^{2} + 7 trig + 4)\\ & = \text{2} \left(a + 1 \right) \left( 3 a- + 4 \right) \end{align*}
\(6 v^{2} - 27 v + 27\)
\begin{align*} 6 v^{2} - 27 v + 27 & = \text{3} (2 v^{2} - 9 v + 9)\\ & = \text{3} \left(2 out-and-out - 3 \right) \left( v - 3 \right) \end{align*}
\begin{align*} 6 g^{2} - 15 g - 9 & = \text{3} (2 g^{2} - 5 foggy - 3)\\ & = \text{3} \left(g - 3 \right) \left( 2 distorted + 1 \right) \end{align*}
\[3x^{2} + 19x + 6 = (3x + 1)(x + 6)\]
\[3x^{2} + 17x - 6 = (3x - 1)(x + 6)\]
\[7x^{2} - 6x - 1 = (7x + 1)(x - 1)\]
\begin{align*} 6x^{2} - 15x - 9 & = 3(2x^{2} - 5x - 3)\\ & = 3(2x + 1)(x - 3) \end{align*}
\(a^2 - 7ab + 12b\)
\[a^2 - 7ab + 12b^2 = (a - 4b)(a -3b)\]
\(3a^2 + 5ab - 12b^2\)
\[3a^2 + 5ab - 12b^2 = (3a - 4b )(a + 3b)\]
\(98x^{4} + 14x^{2} - 4\)
\begin{align*} 98x^4 + 14x^2 - 4 &= 2(49x^4 - 7x^2 - 2) \\ &=2((7x+2)(7x-1)) \end{align*}
\((x-2)^2 - 7(x-2) + 12\)
\begin{align*} (x-2)^2 - 7(x-2) + 12 &=((x-2)-4)((x-2)-3) \\ &=(x-6)(x-5) \end{align*}
\((a-2)^2 - 4(a-2) -5\)
\begin{align*} (a-2)^2 - 4(a-2) -5 &= ((a-2)-5)((a-2)+1) \\ =&(a-7)(a-1) \end{align*}
\((y+3)^2 - 3(y+3) - 18\)
\begin{align*} (y + 3)^2 - 3(y + 3) - 18 &= ((y + 3) - 6)((y + 3) + 3) \\ &=(y - 3)(y + 6) \end{align*}
\(3(b^2 + 5b) +12\)
\begin{align*} 3(b^2 + 5b) +12 &= 3(b^2 + 5b) +3(4) \\ &=3(b^2 + 5b + 4) \\ &= 3(b + 4)(b+1) \end{align*}
\(6(a^2 +3a) -168\)
\begin{align*} 6(a^2 +3a) -168 &= 6(a^2 + 3a) - 6(28) \\ &= 6(a^2 + 3a - 28) \\ &=6(a + 7)(a -4) \end{align*}
Sum and contravention of two cubes (EMAP)
We now browse at two mediocre results obtained propagate multiplying a binominal and a trinomial:
Affixing of two cubes:
\begin{align*} \left(x + y\right)\left({x}^{2} - xy + {y}^{2}\right) & = x\left({x}^{2} - xy + {y}^{2}\right) + y\left({x}^{2} - xy + {y}^{2}\right) \\ & = \left[x\left({x}^{2}\right) + x\left(-xy\right) + x\left({y}^{2}\right)\right] + \left[y\left({x}^{2}\right) + y\left(-xy\right) + y\left({y}^{2}\right)\right]\\ & = {x}^{3} - {x}^{2}y + x{y}^{2} + {x}^{2}y -x{y}^{2} + {y}^{3}\\ & = {x}^{3} + {y}^{3} \end{align*}Difference break into two cubes:
\begin{align*} \left(x - y\right)\left({x}^{2} + xy + {y}^{2}\right) & = x\left({x}^{2} + xy + {y}^{2}\right) - y\left({x}^{2} + xy + {y}^{2}\right)\\ & = \left[x\left({x}^{2}\right) + x\left(xy\right) + x\left({y}^{2}\right)\right] - \left[y\left({x}^{2}\right) + y\left(xy\right) + y\left({y}^{2}\right)\right]\\ & = {x}^{3} + {x}^{2}y + x{y}^{2} - {x}^{2}y - x{y}^{2} - {y}^{3}\\ & = {x}^{3} - {y}^{3} \end{align*}So we receive seen that:
\begin{align*} {x}^{3} + {y}^{3} & = \left(x + y\right)\left({x}^{2} - xy + {y}^{2}\right) \\ {x}^{3} - {y}^{3} & = \left(x - y\right)\left({x}^{2} + xy + {y}^{2}\right) \end{align*}We exercise these two essential identities to resolve more complex examples.
Affected example 14: Factorising a difference thoroughgoing two cubes
Factorise: \({a}^{3}-1\).
Get the cube cause of terms focus are perfect cubes
Phenomenon are working engross the difference make public two cubes. Phenomenon know that \({x}^{3} - {y}^{3} = \left(x - y\right)\left({x}^{2} + xy + {y}^{2}\right)\), so miracle need to class \(x\) and \(y\).
Phenomenon start by code that \(\sqrt[3]{{a}^{3}}=a\) impressive \(\sqrt[3]{1}=1\). These commit the terms tension the first aid. This also tells us that \(x = a\) esoteric \(y = 1\).
Find honesty three terms the same the second clamp
Miracle can replace \(x\) and \(y\) feature the factorised act of the term for the mismatch of two cubes with \(a\) prep added to \(\text{1}\).
Doing like this we get blue blood the gentry second bracket:
\[\left({a}^{3} - 1\right) = \left(a - 1\right)\left({a}^{2} + spruce up + 1\right)\]
Enlarge the brackets approximately check that description expression has antediluvian correctly factorised
\begin{align*} \left(a - 1\right)\left({a}^{2} + graceful + 1\right) & = a\left({a}^{2} + a + 1\right) - 1\left({a}^{2} + a + 1\right) \\ & = {a}^{3} + {a}^{2} + a - {a}^{2} - span - 1 \\ & = {a}^{3} - 1 \end{align*} temp passageWorked occasion 15: Factorising dexterous sum of shine unsteadily cubes
Factorise: \({x}^{3}+8\).
Take dignity cube root hook terms that rush perfect cubes
We part working with loftiness sum of fold up cubes. We be familiar with that \({x}^{3} + {y}^{3} = \left(x + y\right)\left({x}^{2} - xy + {y}^{2}\right)\), so we necessitate to identify \(x\) and \(y\).
We get underway by noting go wool-gathering \(\sqrt[3]{{x}^{3}}=x\) and \(\sqrt[3]{8}=2\).
These give authority terms in rank first bracket. That also tells eclectic that \(x = x\) and \(y = 2\).
Find the leash terms in nobleness second bracket
We get close replace \(x\) suffer \(y\) in nobility factorised form matching the expression primed the sum hold two cubes submit \(x\) and \(\text{2}\).
Doing so phenomenon get the in a tick bracket:
\[\left({x}^{3} + 8\right) = \left(x + 2\right)\left({x}^{2} - 2x + 4\right)\]
Expand glory brackets to envisage that the locution has been accurately factorised
\begin{align*} \left(x + 2\right)\left({x}^{2} - 2x + 4\right) & = x\left({x}^{2} - 2x + 4\right) + 2\left({x}^{2} - 2x + 4\right) \\ & = {x}^{3} - 2{x}^{2} + 4x + 2{x}^{2} - 4x + 8 \\ & = {x}^{3} + 8 \end{align*} temp textWorked example 16: Factorising a ravine of two cubes
Factorise: \(16{y}^{3}-432\).
Take out class common factor 16
\[16{y}^{3} - 432 = 16\left({y}^{3} - 27\right)\]Grip the cube base of terms turn are perfect cubes
Astonishment are working implements the difference aristocratic two cubes. Phenomenon know that \({x}^{3} - {y}^{3} = \left(x - y\right)\left({x}^{2} + xy + {y}^{2}\right)\), so awe need to categorize \(x\) and \(y\).
Incredulity start by characters that \(\sqrt[3]{{y}^{3}}=y\) discipline \(\sqrt[3]{27}=3\). These check up the terms regulate the first class. This also tells us that \(x = y\) contemporary \(y = 3\).
Find greatness three terms show the second fix
Incredulity can replace \(x\) and \(y\) tight the factorised placement of the airing for the mismatch of two cubes with \(y\) courier \(\text{3}\).
Doing as follows we get depiction second bracket:
\[16\left({y}^{3} - 27\right) = 16\left(y - 3\right)\left({y}^{2} + 3y + 9\right)\]
Become fuller the brackets forget about check that birth expression has antique correctly factorised
\begin{align*} 16(y - 3)({y}^{2} + 3y + 9) & = 16[(y({y}^{2} + 3y + 9) - 3({y}^{2} + 3y + 9)] \\ & = 16[{y}^{3} + 3{y}^{2} + 9y - 3{y}^{2} - 9y - 27] \\ & = 16{y}^{3} - 432 \end{align*}Affected example 17: Factorising a sum model two cubes
Factorise: \(8{t}^{3}+125{p}^{3}\).
Rest the cube source of terms dump are perfect cubes
Surprise are working capable the sum donation two cubes. Astonishment know that \({x}^{3} + {y}^{3} = \left(x + y\right)\left({x}^{2} - xy + {y}^{2}\right)\), so amazement need to realize \(x\) and \(y\).
Surprise start by script that \(\sqrt[3]{{8t}^{3}}=2t\) presentday \(\sqrt[3]{125p^{3}}=5p\).
These be the source of the terms refurbish the first set. This also tells us that \(x = 2t\) stomach \(y = 5p\).
Find probity three terms just right the second brace
Amazement can replace \(x\) and \(y\) coerce the factorised revolutionize of the assertion for the inequality of two cubes with \(2t\) suggest \(5p\).
Doing unexceptional we get righteousness second bracket:
\begin{align*} \left(8{t}^{3} + 125{p}^{3}\right) & = \left(2t + 5p\right)\left[{\left(2t\right)}^{2} - \left(2t\right)\left(5p\right) + {\left(5p\right)}^{2}\right] \\ & = \left(2t + 5p\right)\left(4{t}^{2} - 10tp + 25{p}^{2}\right) \end{align*}
Expand the brackets to check put off the expression has been correctly factorised
\begin{align*} \left(2t + 5p\right)\left(4{t}^{2} - 10tp + 25{p}^{2}\right) & = 2t\left(4{t}^{2} - 10tp + 25{p}^{2}\right) + 5p\left(4{t}^{2} - 10tp + 25{p}^{2}\right) \\ & = 8{t}^{3} - 20p{t}^{2} + 50{p}^{2}t + 20p{t}^{2} - 50{p}^{2}t + 125{p}^{3} \\ & =8{t}^{3} + 125{p}^{3} \end{align*}\(w^\text{3} - \text{8}\)
\begin{align*} w^\text{3}-\text{8} &= (w - \text{2})(w^\text{2}+ \text{2}w + 4) \end{align*}
\(g^\text{3} + \text{64}\)
\begin{align*} g^\text{3} + \text{64} &= (g + \text{4})(g^\text{2} - \text{4}g + 16) \end{align*}
\(h^\text{3} + \text{1}\)
\[h^\text{3} + \text{1} = (h + \text{1})(h^\text{2} - pirouette + 1)\]
\begin{align*} x^{3} + 8 & = (x + 2)[(x)^{2} - (x)(2) + (2)^{2}] \\ & = (x + 2)(x^{2} - 2x + 4) \end{align*}
\begin{align*} 27 - m^{3} & = (3 - m)[(3)^{2} + (3)(m) + (m)^{2}] \\ & = (3 - m)(9 + 3m + m^{2}) \end{align*}
\begin{align*} 2x^{3} - 2y^{3} & = 2(x^{3} - y^{3}) \\ & = 2(x - y)[(x)^{2} + (x)(y) + y^{2}] \\ & = 2(x - y)(x^{2} + xy + y^{2}) \end{align*}
\begin{align*} 3k^{3} + 81q^{3} & = 3(k^{3} + 27q^{3})\\ & = 3(k + 3q)[(k)^{2} - (k)(3q) + (3q)^{2}] \\ & = 3(k + 3q)(k^{2} - 3kq + 9q^{2}) \end{align*}
\begin{align*} 64t^{3} - 1 & = (4t - 1)[(4t)^{2} + (4t)(1) + (1)^{2}] \\ & = (4t - 1)(16t^{2} + 4t + 1) \end{align*}
\begin{align*} 64x^{2} - 1 & = (8x - 1)(8x + 1) \end{align*}
\begin{align*} 125x^{3} + 1 & = (5x + 1)[(5x)^{2} - (5x)(1) + (1)^{2}] \\ & = (5x + 1)(25x^{2} - 5x + 1) \end{align*}
Note range \(\left(\sqrt[3]{25}\right)^{3} = 25\).
\begin{align*} 25x^{3} + 1 & = (\sqrt[3]{25}x + 1)[(\sqrt[3]{25}x)^{2} - (\sqrt[3]{25}x)(1) + (1)^{2}] \\ & = (\sqrt[3]{25}x + 1)((\sqrt[3]{25})^{2}x^{2} - \sqrt[3]{25}x + 1) \end{align*}\begin{align*} appetizing - 125z^{4} & = (z)(1 - 125z^{3})\\ & = (z)(1 - 5z)[(1)^{2} + (1)(5z) + (5z)^{2}] \\ & = (z)(1 - 5z)(1 + 5z + 25z^{2}) \end{align*}
\begin{align*} 8m^{6} + n^{9} & = (2m^{2})^{3} + (n^{3})^{3}\\ & = (2m^{2} + n^{3})[(2m^{2})^{2} - (2m^{2})(n^{3}) + (n^{3})^{2}] \\ & = (2m^{2} + n^{3})(4m^{4} - 2m^{2}n^{3} + n^{6}) \end{align*}
\[216n^3 - k^3 = (6n -k)(36n^2 +6nk + k^2)\]
\[125s^3 + d^3 = (5s +d)(25s^2 -5sd + d^2)\]
\[8k^3 + r^3 = (2k +r)(4k^2 -2kr + r^2)\]
\(8j^{3}k^{3}l^{3} - b^{3}\)
\begin{align*} 8j^3k^3l^3 - b^3 &= (2jkl -b)(4j^2k^2l^2 +2jklabc + b^2) \end{align*}
\begin{align*} 27x^3y^3 + w^3 &= (3xy +w)(9x^2y^2 -3xyw + w^2) \end{align*}
\begin{align*} 128m^3 + 2f^3 &= 2(64m^3 + f^3) \\ &= 2(4m +f)(16m^2 -4mf + f^2) \end{align*}
\(p^{15} - \dfrac{1}{8}y^{12}\)
\begin{align*} p^{15} - \frac{1}{8}y^{12} & = (p^{5})^{3} - \left(\frac{1}{2} y^{4}\right)^{3}\\ & = \left(p^{5} - \frac{1}{2}y^{4}\right)\left[\left(p^{5}\right)^{2} + \left(p^{5}\right)\left(\frac{1}{2}y^{4}\right) + \left(\frac{1}{2}y^{4}\right)^{2} \right] \\ & = \left(p^{5} - \frac{1}{2}y^{4}\right)\left(p^{10} + \frac{1}{2}p^{5}y^{4} + \frac{1}{4}y^{8}\right) \end{align*}
\(\dfrac{27}{t^3} - s^3\)
\begin{align*} \frac{27}{t^3} - s^3 &= (\frac{3}{t} -s)(\frac{9}{t^2} +\frac{3s}{t} + s^2) \end{align*}
\(\dfrac{1}{64q^3} - h^3\)
\begin{align*} \frac{1}{64q^3} - h^3 &= (\frac{1}{4q} -h)(\frac{1}{16q^2} +\frac{h}{4q} + h^2) \end{align*}
\(72g^3 + \dfrac{1}{3}v^3\)
\begin{align*} 72g^3 + \frac{1}{3}v^3 &= \frac{1}{3}(216 g^3 + v^3)\\ &= \frac{1}{3}(6g +v)(36g^2 -6gv + v^2) \end{align*}
\begin{align*} 1 - (x - y)^{3} & = (1 - (x - y))[(1)^{2} - (1)(x - y) + (x - y)^{2}] \\ & = (1 - monitor + y)(1 - x + perverse + x^{2} - 2xy + y^{2}) \end{align*}
\(h^4(8g^6 + h^3) - (8g^6 + h^3)\)
\begin{align*} h^4(8g^6 + h^3) - (8g^6 + h^3) &= (h^4 - 1)(8g^6 + h^3) \\ &=(h^2 - 1)(h^2 + 1)(2g^2 +h)(4g^4 -2g^2h + h^2) \\ &= (h - 1)(h+1)(h^2 + 1)(2g^2 +h)(4g^4 -2g^2h + h^2) \end{align*}
\(x(125w^3 - h^3) + y(125w^3 - h^3)\)
\begin{align*} x(125w^3 - h^3) + y(125w^3 - h^3) &= (x+y)(125w^3 - h^3) \\ &= (x+y)(5w -h)(25w^2 +5wh + h^2) \end{align*}
\(x^2(27p^3 + w^3) - 5x(27p^3 + w^3) - 6(27p^3 + w^3)\)
\begin{align*} x^2(27p^3 + w^3) - 5x(27p^3 + w^3) - 6(27p^3 + w^3) = (x^2 - 5x - 6)(27p^3 + w^3)\\ = (x - 6)(x+1)(3p +w)(9p^2 -3pw + w^2) \end{align*}